skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clement, Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anthropogenically forced climate change signals are emerging from the noise of internal variability in observations, and the impacts on society are growing. For decades, Climate or Earth System Models have been predicting how these climate change signals will unfold. While challenges remain, given the growing forced trends and the lengthening observational record, the climate science community is now in a position to confront the signals, as represented by historical trends, in models with observations. This review covers the state of the science on the ability of models to represent historical trends in the climate system. It also outlines robust procedures that should be used when comparing modeled and observed trends and how to move beyond quantification into understanding. Finally, this review discusses cutting-edge methods for identifying sources of discrepancies and the importance of future confrontations. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  2. White, M. (Ed.)
  3. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less
  4. Abstract This paper attempts to enhance our understanding of the causes of Atlantic Multidecadal Variability, the AMV. Following the literature, we define the AMV as the SST averaged over the North Atlantic basin, linearly detrended and low-pass filtered. There is an ongoing debate about the drivers of the AMV, which include internal variability generated from the ocean or atmosphere (or both), and external radiative forcing. We test the role of these factors in explaining the time history, variance, and spatial pattern of the AMV using a 41-member ensemble from a fully coupled version of CESM and a 10-member ensemble of the CESM atmosphere coupled to a slab ocean. The large ensemble allows us to isolate the role of external forcing versus internal variability, and the model differences allow us to isolate the role of coupled ocean circulation. Both with and without coupled ocean circulation, external forcing explains more than half of the variance of the observed AMV time series, indicating its important role in simulating the 20 th century AMV phases. In this model the net effect of ocean processes is to reduce the variance of the AMV. Dynamical ocean coupling also reduces the ability of the model to simulate the characteristic spatial pattern of the AMV, but forcing has little impact on the pattern. Historical forcing improves the time history and variance of the AMV simulation, whilst the more realistic ocean representation reduces the variance below that observed and lowers the correlation with observations. 
    more » « less
  5. Abstract The North Atlantic Oscillation (NAO) is predictable in climate models at near-decadal timescales. Predictive skill derives from ocean initialization, which can capture variability internal to the climate system, and from external radiative forcing. Herein, we show that predictive skill for the NAO in a very large uninitialized multi-model ensemble is commensurate with previously reported skill from a state-of-the-art initialized prediction system. The uninitialized ensemble and initialized prediction system produce similar levels of skill for northern European precipitation and North Atlantic SSTs. Identifying these predictable components becomes possible in a very large ensemble, confirming the erroneously low signal-to-noise ratio previously identified in both initialized and uninitialized climate models. Though the results here imply that external radiative forcing is a major source of predictive skill for the NAO, they also indicate that ocean initialization may be important for particular NAO events (the mid-1990s strong positive NAO), and, as previously suggested, in certain ocean regions such as the subpolar North Atlantic ocean. Overall, we suggest that improving climate models’ response to external radiative forcing may help resolve the known signal-to-noise error in climate models. 
    more » « less
  6. Abstract Although societally important, extreme precipitation is difficult to represent in climate models. This study shows one robust aspect of extreme precipitation across models: extreme precipitation over tropical oceans is strengthened through a positive feedback with cloud-radiative effects. This connection is shown for a multi-model ensemble with experiments that make clouds transparent to longwave radiation. In all cases, tropical extreme precipitation reduces without cloud-radiative effects. Qualitatively similar results are presented for one model using the cloud-locking method to remove cloud feedbacks. The reduced extreme precipitation without cloud-radiative feedbacks does not arise from changes in the mean climate. Rather, evidence is presented that cloud-radiative feedbacks enhance organization of convection and most extreme precipitation over tropical oceans occurs within organized systems. This result suggests that climate models must correctly predict cloud structure and properties, as well as capture the essence of organized convection in order to accurately represent extreme rainfall. 
    more » « less